Fast-forwardable Lindbladians imply quantum phase estimation (2510.06759v1)
Abstract: Quantum phase estimation (QPE) and Lindbladian dynamics are both foundational in quantum information science and central to quantum algorithm design. In this work, we bridge these two concepts: certain simple Lindbladian processes can be adapted to perform QPE-type tasks. However, unlike QPE, which achieves Heisenberg-limit scaling, these Lindbladian evolutions are restricted to standard quantum limit complexity. This indicates that, different from Hamiltonian dynamics, the natural dissipative evolution speed of such Lindbladians does not saturate the fundamental quantum limit, thereby suggesting the potential for quadratic fast-forwarding. We confirm this by presenting a quantum algorithm that simulates these Lindbladians for time $t$ within an error $\varepsilon$ using $\mathcal{O}\left(\sqrt{t\log(\varepsilon{-1})}\right)$ cost, whose mechanism is fundamentally different from the fast-forwarding examples of Hamiltonian dynamics. As a bonus, this fast-forwarded simulation naturally serves as a new Heisenberg-limit QPE algorithm. Therefore, our work explicitly bridges the standard quantum limit-Heisenberg limit transition to the fast-forwarding of dissipative dynamics. We also adopt our fast-forwarding algorithm for efficient Gibbs state preparation and demonstrate the counter-intuitive implication: the allowance of a quadratically accelerated decoherence effect under arbitrary Pauli noise.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.