Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Transforming Noise Distributions with Histogram Matching: Towards a Single Denoiser for All (2510.06757v1)

Published 8 Oct 2025 in cs.CV

Abstract: Supervised Gaussian denoisers exhibit limited generalization when confronted with out-of-distribution noise, due to the diverse distributional characteristics of different noise types. To bridge this gap, we propose a histogram matching approach that transforms arbitrary noise towards a target Gaussian distribution with known intensity. Moreover, a mutually reinforcing cycle is established between noise transformation and subsequent denoising. This cycle progressively refines the noise to be converted, making it approximate the real noise, thereby enhancing the noise transformation effect and further improving the denoising performance. We tackle specific noise complexities: local histogram matching handles signal-dependent noise, intrapatch permutation processes channel-related noise, and frequency-domain histogram matching coupled with pixel-shuffle down-sampling breaks spatial correlation. By applying these transformations, a single Gaussian denoiser gains remarkable capability to handle various out-of-distribution noises, including synthetic noises such as Poisson, salt-and-pepper and repeating pattern noises, as well as complex real-world noises. Extensive experiments demonstrate the superior generalization and effectiveness of our method.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: