Papers
Topics
Authors
Recent
2000 character limit reached

Gaussian Equivalence for Self-Attention: Asymptotic Spectral Analysis of Attention Matrix

Published 8 Oct 2025 in stat.ML, cs.LG, and math.PR | (2510.06685v1)

Abstract: Self-attention layers have become fundamental building blocks of modern deep neural networks, yet their theoretical understanding remains limited, particularly from the perspective of random matrix theory. In this work, we provide a rigorous analysis of the singular value spectrum of the attention matrix and establish the first Gaussian equivalence result for attention. In a natural regime where the inverse temperature remains of constant order, we show that the singular value distribution of the attention matrix is asymptotically characterized by a tractable linear model. We further demonstrate that the distribution of squared singular values deviates from the Marchenko-Pastur law, which has been believed in previous work. Our proof relies on two key ingredients: precise control of fluctuations in the normalization term and a refined linearization that leverages favorable Taylor expansions of the exponential. This analysis also identifies a threshold for linearization and elucidates why attention, despite not being an entrywise operation, admits a rigorous Gaussian equivalence in this regime.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 8 likes about this paper.