Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 28 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Automated Discovery of Test Oracles for Database Management Systems Using LLMs (2510.06663v1)

Published 8 Oct 2025 in cs.DB, cs.PL, and cs.SE

Abstract: Since 2020, automated testing for Database Management Systems (DBMSs) has flourished, uncovering hundreds of bugs in widely-used systems. A cornerstone of these techniques is test oracle, which typically implements a mechanism to generate equivalent query pairs, thereby identifying bugs by checking the consistency between their results. However, while applying these oracles can be automated, their design remains a fundamentally manual endeavor. This paper explores the use of LLMs to automate the discovery and instantiation of test oracles, addressing a long-standing bottleneck towards fully automated DBMS testing. Although LLMs demonstrate impressive creativity, they are prone to hallucinations that can produce numerous false positive bug reports. Furthermore, their significant monetary cost and latency mean that LLM invocations should be limited to ensure that bug detection is efficient and economical. To this end, we introduce Argus, a novel framework built upon the core concept of the Constrained Abstract Query - a SQL skeleton containing placeholders and their associated instantiation conditions (e.g., requiring a placeholder to be filled by a boolean column). Argus uses LLMs to generate pairs of these skeletons that are asserted to be semantically equivalent. This equivalence is then formally proven using a SQL equivalence solver to ensure soundness. Finally, the placeholders within the verified skeletons are instantiated with concrete, reusable SQL snippets that are also synthesized by LLMs to efficiently produce complex test cases. We implemented Argus and evaluated it on five extensively tested DBMSs, discovering 40 previously unknown bugs, 35 of which are logic bugs, with 36 confirmed and 26 already fixed by the developers.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube