Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

LLM-Powered Nuanced Video Attribute Annotation for Enhanced Recommendations (2510.06657v1)

Published 8 Oct 2025 in cs.IR

Abstract: This paper presents a case study on deploying LLMs as an advanced "annotation" mechanism to achieve nuanced content understanding (e.g., discerning content "vibe") at scale within a large-scale industrial short-form video recommendation system. Traditional machine learning classifiers for content understanding face protracted development cycles and a lack of deep, nuanced comprehension. The "LLM-as-annotators" approach addresses these by significantly shortening development times and enabling the annotation of subtle attributes. This work details an end-to-end workflow encompassing: (1) iterative definition and robust evaluation of target attributes, refined by offline metrics and online A/B testing; (2) scalable offline bulk annotation of video corpora using LLMs with multimodal features, optimized inference, and knowledge distillation for broad application; and (3) integration of these rich annotations into the online recommendation serving system, for example, through personalized restrict retrieval. Experimental results demonstrate the efficacy of this approach, with LLMs outperforming human raters in offline annotation quality for nuanced attributes and yielding significant improvements of user participation and satisfied consumption in online A/B tests. The study provides insights into designing and scaling production-level LLM pipelines for rich content evaluation, highlighting the adaptability and benefits of LLM-generated nuanced understanding for enhancing content discovery, user satisfaction, and the overall effectiveness of modern recommendation systems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 4 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube