Papers
Topics
Authors
Recent
2000 character limit reached

StaR-KVQA: Structured Reasoning Traces for Implicit-Knowledge Visual Question Answering (2510.06638v1)

Published 8 Oct 2025 in cs.CV and cs.AI

Abstract: Knowledge-based Visual Question Answering (KVQA) requires models to ground entities in images and reason over factual knowledge. We study its implicit-knowledge variant, IK-KVQA, where a multimodal LLM (MLLM) is the sole knowledge source, without external retrieval. Yet, MLLMs lack explicit reasoning supervision and produce inconsistent justifications, and generalize poorly after standard supervised fine-tuning (SFT). We present StaR-KVQA (Structured Reasoning Traces for IK-KVQA), which supervises structured traces - dual symbolic relation paths plus path-grounded natural-language explanations - so that reasoning becomes transparent and verifiable. With one open-source MLLM, StaR-KVQA constructs and selects path-grounded reasoning traces to form a trace-enriched dataset, then fine-tunes via structured self-distillation to align generation with supervision; no external retrievers, verifiers, or curated knowledge bases (KBs) are used, traces are built offline, and inference is a single autoregressive pass. Across benchmarks, StaR-KVQA improves both accuracy and interpretability, achieving up to +11.3% higher answer accuracy on OK-VQA over the strongest baseline while exhibiting robust cross-domain generalization.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.