Papers
Topics
Authors
Recent
2000 character limit reached

StruSR: Structure-Aware Symbolic Regression with Physics-Informed Taylor Guidance (2510.06635v1)

Published 8 Oct 2025 in cs.LG and cs.CV

Abstract: Symbolic regression aims to find interpretable analytical expressions by searching over mathematical formula spaces to capture underlying system behavior, particularly in scientific modeling governed by physical laws. However, traditional methods lack mechanisms for extracting structured physical priors from time series observations, making it difficult to capture symbolic expressions that reflect the system's global behavior. In this work, we propose a structure-aware symbolic regression framework, called StruSR, that leverages trained Physics-Informed Neural Networks (PINNs) to extract locally structured physical priors from time series data. By performing local Taylor expansions on the outputs of the trained PINN, we obtain derivative-based structural information to guide symbolic expression evolution. To assess the importance of expression components, we introduce a masking-based attribution mechanism that quantifies each subtree's contribution to structural alignment and physical residual reduction. These sensitivity scores steer mutation and crossover operations within genetic programming, preserving substructures with high physical or structural significance while selectively modifying less informative components. A hybrid fitness function jointly minimizes physics residuals and Taylor coefficient mismatch, ensuring consistency with both the governing equations and the local analytical behavior encoded by the PINN. Experiments on benchmark PDE systems demonstrate that StruSR improves convergence speed, structural fidelity, and expression interpretability compared to conventional baselines, offering a principled paradigm for physics-grounded symbolic discovery.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.