Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Self-supervised Physics-guided Model with Implicit Representation Regularization for Fast MRI Reconstruction (2510.06611v1)

Published 8 Oct 2025 in cs.CV

Abstract: Magnetic Resonance Imaging (MRI) is a vital clinical diagnostic tool, yet its widespread application is limited by prolonged scan times. Fast MRI reconstruction techniques effectively reduce acquisition duration by reconstructing high-fidelity MR images from undersampled k-space data. In recent years, deep learning-based methods have demonstrated remarkable progress in this field, with self-supervised and unsupervised learning approaches proving particularly valuable in scenarios where fully sampled data are difficult to obtain. This paper proposes a novel zero-shot self-supervised reconstruction framework named UnrollINR, which enables scan-specific MRI reconstruction without relying on external training data. The method adopts a physics-guided unrolled iterative reconstruction architecture and introduces Implicit Neural Representation (INR) as a regularization prior to effectively constrain the solution space. By combining a deep unrolled structure with the powerful implicit representation capability of INR, the model's interpretability and reconstruction performance are enhanced. Experimental results demonstrate that even at a high acceleration rate of 10, UnrollINR achieves superior reconstruction performance compared to the supervised learning method, validating the superiority of the proposed method.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.