Papers
Topics
Authors
Recent
Search
2000 character limit reached

From Captions to Keyframes: Efficient Video Summarization via Caption- and Context-Aware Frame Scoring

Published 7 Oct 2025 in cs.CV | (2510.06509v1)

Abstract: Efficient video-language understanding requires selecting a small set of frames that retain semantic and contextual information from long videos. We propose KeyScore, a multimodal frame scoring framework that jointly leverages captions and visual context to estimate frame-level importance. By combining semantic similarity, temporal diversity, and contextual drop impact, KeyScore identifies the most informative frames for downstream tasks such as retrieval, captioning, and video-language reasoning. To complement KeyScore, we introduce STACFP (Spatio-Temporal Adaptive Clustering for Frame Proposals), which generates compact and diverse frame candidates for long-form videos. Together, these modules achieve up to 99\% frame reduction compared to full-frame inference and substantially outperform standard 8-frame encoders on MSRVTT, MSVD, and DiDeMo. Our results demonstrate that emphasizing multimodal alignment between visual and textual signals enables scalable, efficient, and caption-grounded video understanding -- without explicit video summarization.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.