Bayesian Optimization under Uncertainty for Training a Scale Parameter in Stochastic Models (2510.06439v1)
Abstract: Hyperparameter tuning is a challenging problem especially when the system itself involves uncertainty. Due to noisy function evaluations, optimization under uncertainty can be computationally expensive. In this paper, we present a novel Bayesian optimization framework tailored for hyperparameter tuning under uncertainty, with a focus on optimizing a scale- or precision-type parameter in stochastic models. The proposed method employs a statistical surrogate for the underlying random variable, enabling analytical evaluation of the expectation operator. Moreover, we derive a closed-form expression for the optimizer of the random acquisition function, which significantly reduces computational cost per iteration. Compared with a conventional one-dimensional Monte Carlo-based optimization scheme, the proposed approach requires 40 times fewer data points, resulting in up to a 40-fold reduction in computational cost. We demonstrate the effectiveness of the proposed method through two numerical examples in computational engineering.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.