Papers
Topics
Authors
Recent
2000 character limit reached

Nearly Instance-Optimal Parameter Recovery from Many Trajectories via Hellinger Localization (2510.06434v1)

Published 7 Oct 2025 in cs.LG and stat.ML

Abstract: Learning from temporally-correlated data is a core facet of modern machine learning. Yet our understanding of sequential learning remains incomplete, particularly in the multi-trajectory setting where data consists of many independent realizations of a time-indexed stochastic process. This important regime both reflects modern training pipelines such as for large foundation models, and offers the potential for learning without the typical mixing assumptions made in the single-trajectory case. However, instance-optimal bounds are known only for least-squares regression with dependent covariates; for more general models or loss functions, the only broadly applicable guarantees result from a reduction to either i.i.d. learning, with effective sample size scaling only in the number of trajectories, or an existing single-trajectory result when each individual trajectory mixes, with effective sample size scaling as the full data budget deflated by the mixing-time. In this work, we significantly broaden the scope of instance-optimal rates in multi-trajectory settings via the Hellinger localization framework, a general approach for maximum likelihood estimation. Our method proceeds by first controlling the squared Hellinger distance at the path-measure level via a reduction to i.i.d. learning, followed by localization as a quadratic form in parameter space weighted by the trajectory Fisher information. This yields instance-optimal bounds that scale with the full data budget under a broad set of conditions. We instantiate our framework across four diverse case studies: a simple mixture of Markov chains, dependent linear regression under non-Gaussian noise, generalized linear models with non-monotonic activations, and linear-attention sequence models. In all cases, our bounds nearly match the instance-optimal rates from asymptotic normality, substantially improving over standard reductions.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.