Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Instructional Goal-Aligned Question Generation for Student Evaluation in Virtual Lab Settings: How Closely Do LLMs Actually Align? (2510.06411v1)

Published 7 Oct 2025 in cs.CL

Abstract: Virtual Labs offer valuable opportunities for hands-on, inquiry-based science learning, yet teachers often struggle to adapt them to fit their instructional goals. Third-party materials may not align with classroom needs, and developing custom resources can be time-consuming and difficult to scale. Recent advances in LLMs offer a promising avenue for addressing these limitations. In this paper, we introduce a novel alignment framework for instructional goal-aligned question generation, enabling teachers to leverage LLMs to produce simulation-aligned, pedagogically meaningful questions through natural language interaction. The framework integrates four components: instructional goal understanding via teacher-LLM dialogue, lab understanding via knowledge unit and relationship analysis, a question taxonomy for structuring cognitive and pedagogical intent, and the TELeR taxonomy for controlling prompt detail. Early design choices were informed by a small teacher-assisted case study, while our final evaluation analyzed over 1,100 questions from 19 open-source LLMs. With goal and lab understanding grounding questions in teacher intent and simulation context, the question taxonomy elevates cognitive demand (open-ended formats and relational types raise quality by 0.29-0.39 points), and optimized TELeR prompts enhance format adherence (80% parsability, >90% adherence). Larger models yield the strongest gains: parsability +37.1%, adherence +25.7%, and average quality +0.8 Likert points.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube