Papers
Topics
Authors
Recent
2000 character limit reached

Off-Trajectory Reasoning: Can LLMs Collaborate on Reasoning Trajectory? (2510.06410v1)

Published 7 Oct 2025 in cs.AI

Abstract: Reasoning LLMs are trained to verbalize their reasoning process, yielding strong gains on complex tasks. This transparency also opens a promising direction: multiple reasoners can directly collaborate on each other's thinking within a shared trajectory, yielding better inference efficiency and exploration. A key prerequisite, however, is the ability to assess the usefulness and build on another model's partial thinking -- we call this off-trajectory reasoning. Our paper investigates a critical question: can standard solo-reasoning training pipelines deliver desired off-trajectory behaviors? We propose twin tests that capture the two extremes of the off-trajectory spectrum, namely Recoverability, which tests whether LLMs can backtrack from "distractions" induced by misleading reasoning traces, and Guidability, which tests their ability to build upon correct reasoning from stronger collaborators. Our study evaluates 15 open-weight LLMs (1.5B-32B) and reveals a counterintuitive finding -- "stronger" LLMs on benchmarks are often more fragile under distraction. Moreover, all models tested fail to effectively leverage guiding steps from collaborators on problems beyond their inherent capabilities with solve rates remaining under 9.2%. Finally, we conduct control studies to isolate the effects of three factors in post-training on these behaviors: the choice of distillation teacher, the use of RL, and data selection strategy. Our results provide actionable insights for training natively strong reasoning collaborators; e.g., we find that suboptimal recoverability behaviors of teacher models are transferred to distilled students even if the distillation trajectories are correct. Taken together, this work lays the groundwork for evaluating multi-model collaborations in shared reasoning trajectories and highlights the limitations of off-the-shelf reasoning LLMs.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.