Papers
Topics
Authors
Recent
2000 character limit reached

Reward Model Perspectives: Whose Opinions Do Reward Models Reward? (2510.06391v1)

Published 7 Oct 2025 in cs.CL and cs.AI

Abstract: Reward models (RMs) are central to the alignment of LMs. An RM often serves as a proxy for human preferences to guide downstream LM behavior. However, our understanding of RM behavior is limited. Our work (i) formalizes a framework for measuring the alignment of opinions captured by RMs, (ii) investigates the extent to which RMs demonstrate sociodemographic biases, and (iii) explores the effects of prompting to steer rewards towards the preferences of a target group. We study the subjective and diverse perspectives on controversial topics, which allows us to quantify RM perspectives in terms of their opinions, attitudes, and values. We show that RMs are poorly aligned with several demographic groups and can systematically reward harmful stereotypes, and steering alone is not enough to overcome these limitations. Our findings underscore the need for more careful consideration of RM behavior in model alignment during preference learning to prevent the propagation of unwanted social biases in the language technologies that we use.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.