Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Generalised quantum Sanov theorem revisited (2510.06340v1)

Published 7 Oct 2025 in quant-ph, cs.IT, math-ph, math.IT, and math.MP

Abstract: Given two families of quantum states $A$ and $B$, called the null and the alternative hypotheses, quantum hypothesis testing is the task of determining whether an unknown quantum state belongs to $A$ or $B$. Mistaking $A$ for $B$ is a type I error, and vice versa for the type II error. In quantum Shannon theory, a fundamental role is played by the Stein exponent, i.e. the asymptotic rate of decay of the type II error probability for a given threshold on the type I error probability. Stein exponents have been thoroughly investigated -- and, sometimes, calculated. However, most currently available solutions apply to settings where the hypotheses simple (i.e. composed of a single state), or else the families $A$ and $B$ need to satisfy stringent constraints that exclude physically important sets of states, such as separable states or stabiliser states. In this work, we establish a general formula for the Stein exponent where both hypotheses are allowed to be composite: the alternative hypothesis $B$ is assumed to be either composite i.i.d. or arbitrarily varying, with components taken from a known base set, while the null hypothesis $A$ is fully general, and required to satisfy only weak compatibility assumptions that are met in most physically relevant cases -- for instance, by the sets of separable or stabiliser states. Our result extends and subsumes the findings of BBH, CMP 385:55, 2021, as well as the 'generalised quantum Sanov theorem' of [LBR, arXiv:2408.07067]. The proof relies on a careful quantum-to-classical reduction via measurements, followed by an application of the results on classical Stein exponents obtained in [Lami, arXiv:today]. We also devise new purely quantum techniques to analyse the resulting asymptotic expressions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper:

alphaXiv