Papers
Topics
Authors
Recent
2000 character limit reached

RGBD Gaze Tracking Using Transformer for Feature Fusion (2510.06298v1)

Published 7 Oct 2025 in cs.CV and cs.AI

Abstract: Subject of this thesis is the implementation of an AI-based Gaze Tracking system using RGBD images that contain both color (RGB) and depth (D) information. To fuse the features extracted from the images, a module based on the Transformer architecture is used. The combination of RGBD input images and Transformers was chosen because it has not yet been investigated. Furthermore, a new dataset is created for training the AI models as existing datasets either do not contain depth information or only contain labels for Gaze Point Estimation that are not suitable for the task of Gaze Angle Estimation. Various model configurations are trained, validated and evaluated on a total of three different datasets. The trained models are then to be used in a real-time pipeline to estimate the gaze direction and thus the gaze point of a person in front of a computer screen. The AI model architecture used in this thesis is based on an earlier work by Lian et al. It uses a Generative Adversarial Network (GAN) to simultaneously remove depth map artifacts and extract head pose features. Lian et al. achieve a mean Euclidean error of 38.7mm on their own dataset ShanghaiTechGaze+. In this thesis, a model architecture with a Transformer module for feature fusion achieves a mean Euclidean error of 55.3mm on the same dataset, but we show that using no pre-trained GAN module leads to a mean Euclidean error of 30.1mm. Replacing the Transformer module with a Multilayer Perceptron (MLP) improves the error to 26.9mm. These results are coherent with the ones on the other two datasets. On the ETH-XGaze dataset, the model with Transformer module achieves a mean angular error of 3.59{\deg} and without Transformer module 3.26{\deg}, whereas the fundamentally different model architecture used by the dataset authors Zhang et al. achieves a mean angular error of 2.04{\deg}. On the OTH-Gaze-Estimation dataset created for...

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.