Papers
Topics
Authors
Recent
2000 character limit reached

Scalable multilingual PII annotation for responsible AI in LLMs (2510.06250v1)

Published 3 Oct 2025 in cs.CL and cs.AI

Abstract: As LLMs gain wider adoption, ensuring their reliable handling of Personally Identifiable Information (PII) across diverse regulatory contexts has become essential. This work introduces a scalable multilingual data curation framework designed for high-quality PII annotation across 13 underrepresented locales, covering approximately 336 locale-specific PII types. Our phased, human-in-the-loop annotation methodology combines linguistic expertise with rigorous quality assurance, leading to substantial improvements in recall and false positive rates from pilot, training, and production phases. By leveraging inter-annotator agreement metrics and root-cause analysis, the framework systematically uncovers and resolves annotation inconsistencies, resulting in high-fidelity datasets suitable for supervised LLM fine-tuning. Beyond reporting empirical gains, we highlight common annotator challenges in multilingual PII labeling and demonstrate how iterative, analytics-driven pipelines can enhance both annotation quality and downstream model reliability.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.