Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

StarEmbed: Benchmarking Time Series Foundation Models on Astronomical Observations of Variable Stars (2510.06200v1)

Published 7 Oct 2025 in astro-ph.SR, astro-ph.IM, and cs.AI

Abstract: Time series foundation models (TSFMs) are increasingly being adopted as highly-capable general-purpose time series representation learners. Although their training corpora are vast, they exclude astronomical time series data. Observations of stars produce peta-scale time series with unique challenges including irregular sampling and heteroskedasticity. We introduce StarEmbed, the first public benchmark for rigorous and standardized evaluation of state-of-the-art TSFMs on stellar time series observations (``light curves''). We benchmark on three scientifically-motivated downstream tasks: unsupervised clustering, supervised classification, and out-of-distribution source detection. StarEmbed integrates a catalog of expert-vetted labels with multi-variate light curves from the Zwicky Transient Facility, yielding ~40k hand-labeled light curves spread across seven astrophysical classes. We evaluate the zero-shot representation capabilities of three TSFMs (MOIRAI, Chronos, Chronos-Bolt) and a domain-specific transformer (Astromer) against handcrafted feature extraction, the long-standing baseline in the astrophysics literature. Our results demonstrate that these TSFMs, especially the Chronos models, which are trained on data completely unlike the astronomical observations, can outperform established astrophysics-specific baselines in some tasks and effectively generalize to entirely new data. In particular, TSFMs deliver state-of-the-art performance on our out-of-distribution source detection benchmark. With the first benchmark of TSFMs on astronomical time series data, we test the limits of their generalization and motivate a paradigm shift in time-domain astronomy from using task-specific, fully supervised pipelines toward adopting generic foundation model representations for the analysis of peta-scale datasets from forthcoming observatories.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 1 like.