Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 66 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Climate Model Tuning with Online Synchronization-Based Parameter Estimation (2510.06180v1)

Published 7 Oct 2025 in nlin.CD, cs.LG, and physics.ao-ph

Abstract: In climate science, the tuning of climate models is a computationally intensive problem due to the combination of the high-dimensionality of the system state and long integration times. Here we demonstrate the potential of a parameter estimation algorithm which makes use of synchronization to tune a global atmospheric model at modest computational costs. We first use it to directly optimize internal model parameters. We then apply the algorithm to the weights of each member of a supermodel ensemble to optimize the overall predictions. In both cases, the algorithm is able to find parameters which result in reduced errors in the climatology of the model. Finally, we introduce a novel approach which combines both methods called adaptive supermodeling, where the internal parameters of the members of a supermodel are tuned simultaneously with the model weights such that the supermodel predictions are optimized. For a case designed to challenge the two previous methods, adaptive supermodeling achieves a performance similar to a perfect model.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 4 likes.