Towards Data-Efficient Medical Imaging: A Generative and Semi-Supervised Framework (2510.06123v1)
Abstract: Deep learning in medical imaging is often limited by scarce and imbalanced annotated data. We present SSGNet, a unified framework that combines class specific generative modeling with iterative semisupervised pseudo labeling to enhance both classification and segmentation. Rather than functioning as a standalone model, SSGNet augments existing baselines by expanding training data with StyleGAN3 generated images and refining labels through iterative pseudo labeling. Experiments across multiple medical imaging benchmarks demonstrate consistent gains in classification and segmentation performance, while Frechet Inception Distance analysis confirms the high quality of generated samples. These results highlight SSGNet as a practical strategy to mitigate annotation bottlenecks and improve robustness in medical image analysis.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.