Papers
Topics
Authors
Recent
2000 character limit reached

There is More to Attention: Statistical Filtering Enhances Explanations in Vision Transformers (2510.06070v1)

Published 7 Oct 2025 in cs.CV

Abstract: Explainable AI (XAI) has become increasingly important with the rise of large transformer models, yet many explanation methods designed for CNNs transfer poorly to Vision Transformers (ViTs). Existing ViT explanations often rely on attention weights, which tend to yield noisy maps as they capture token-to-token interactions within each layer.While attribution methods incorporating MLP blocks have been proposed, we argue that attention remains a valuable and interpretable signal when properly filtered. We propose a method that combines attention maps with a statistical filtering, initially proposed for CNNs, to remove noisy or uninformative patterns and produce more faithful explanations. We further extend our approach with a class-specific variant that yields discriminative explanations. Evaluation against popular state-of-the-art methods demonstrates that our approach produces sharper and more interpretable maps. In addition to perturbation-based faithfulness metrics, we incorporate human gaze data to assess alignment with human perception, arguing that human interpretability remains essential for XAI. Across multiple datasets, our approach consistently outperforms or is comparable to the SOTA methods while remaining efficient and human plausible.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.