The fragility of "cultural tendencies" in LLMs (2510.05869v1)
Abstract: In a recent study, Lu, Song, and Zhang (2025) (LSZ) propose that LLMs, when prompted in different languages, display culturally specific tendencies. They report that the two models (i.e., GPT and ERNIE) respond in more interdependent and holistic ways when prompted in Chinese, and more independent and analytic ways when prompted in English. LSZ attribute these differences to deep-seated cultural patterns in the models, claiming that prompt language alone can induce substantial cultural shifts. While we acknowledge the empirical patterns they observed, we find their experiments, methods, and interpretations problematic. In this paper, we critically re-evaluate the methodology, theoretical framing, and conclusions of LSZ. We argue that the reported "cultural tendencies" are not stable traits but fragile artifacts of specific models and task design. To test this, we conducted targeted replications using a broader set of LLMs and a larger number of test items. Our results show that prompt language has minimal effect on outputs, challenging LSZ's claim that these models encode grounded cultural beliefs.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.