Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 109 tok/s
Gemini 3.0 Pro 52 tok/s Pro
Gemini 2.5 Flash 159 tok/s Pro
Kimi K2 203 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Data-efficient Targeted Token-level Preference Optimization for LLM-based Text-to-Speech (2510.05799v1)

Published 7 Oct 2025 in cs.CL, cs.AI, and cs.SD

Abstract: Aligning text-to-speech (TTS) system outputs with human feedback through preference optimization has been shown to effectively improve the robustness and naturalness of LLM-based TTS models. Current approaches primarily require paired desirable and undesirable samples at the utterance level. However, such pairs are often limited in TTS output data, and utterance-level formulation prevents fine-grained token-level optimization needed for accurate pronunciation alignment. In this study, we propose TKTO that eliminates the need for paired data, enabling a more data-efficient training paradigm, and directly targets token-level units, automatically providing fine-grained alignment signals without token-level annotations. TKTO improves the challenging Japanese TTS accuracy by 39% and reduces CER by 54%, automatically assigning 12.8 times stronger reward to targeted tokens.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: