Code-Switching In-Context Learning for Cross-Lingual Transfer of Large Language Models (2510.05678v1)
Abstract: While LLMs exhibit strong multilingual abilities, their reliance on English as latent representations creates a translation barrier, where reasoning implicitly depends on internal translation into English. When this process fails, performance in non-English languages deteriorates sharply, limiting the inclusiveness of LLM-based applications. Existing cross-lingual in-context learning (X-ICL) methods primarily leverage monolingual demonstrations, often failing to mitigate this barrier and instead reinforcing it. In this work, we introduce code-switching in-context learning (CSICL), a simple yet effective prompting strategy that progressively transitions from a target language to English within demonstrations and instruction to facilitate their latent reasoning in English. By explicitly scaffolding the reasoning process through controlled code-switching, CSICL acts as an implicit linguistic bridge that enhances cross-lingual alignment and reduces reliance on the translation barrier. We conduct extensive experiments across 4 LLMs, 6 datasets, and 10 languages, spanning both knowledge-intensive and reasoning-oriented domains. Our results demonstrate that CSICL consistently outperforms X-ICL baselines, achieving gains of 3.1%p and 1.9%p in both target and unseen languages, respectively. The improvement is even more pronounced in low-resource settings, with gains of 14.7% in target and 5.3% in unseen languages. These findings establish code-switching as a principled and robust approach for overcoming the translation barrier during inference, moving LLMs toward more equitable and effective multilingual systems.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.