Combined Hyperbolic and Euclidean Soft Triple Loss Beyond the Single Space Deep Metric Learning (2510.05643v1)
Abstract: Deep metric learning (DML) aims to learn a neural network mapping data to an embedding space, which can represent semantic similarity between data points. Hyperbolic space is attractive for DML since it can represent richer structures, such as tree structures. DML in hyperbolic space is based on pair-based loss or unsupervised regularization loss. On the other hand, supervised proxy-based losses in hyperbolic space have not been reported yet due to some issues in applying proxy-based losses in a hyperbolic space. However, proxy-based losses are attractive for large-scale datasets since they have less training complexity. To address these, this paper proposes the Combined Hyperbolic and Euclidean Soft Triple (CHEST) loss. CHEST loss is composed of the proxy-based losses in hyperbolic and Euclidean spaces and the regularization loss based on hyperbolic hierarchical clustering. We find that the combination of hyperbolic and Euclidean spaces improves DML accuracy and learning stability for both spaces. Finally, we evaluate the CHEST loss on four benchmark datasets, achieving a new state-of-the-art performance.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.