Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Domain-Shift-Aware Conformal Prediction for Large Language Models (2510.05566v1)

Published 7 Oct 2025 in stat.ML, cs.AI, cs.CL, cs.LG, and stat.AP

Abstract: LLMs have achieved impressive performance across diverse tasks. However, their tendency to produce overconfident and factually incorrect outputs, known as hallucinations, poses risks in real world applications. Conformal prediction provides finite-sample, distribution-free coverage guarantees, but standard conformal prediction breaks down under domain shift, often leading to under-coverage and unreliable prediction sets. We propose a new framework called Domain-Shift-Aware Conformal Prediction (DS-CP). Our framework adapts conformal prediction to LLMs under domain shift, by systematically reweighting calibration samples based on their proximity to the test prompt, thereby preserving validity while enhancing adaptivity. Our theoretical analysis and experiments on the MMLU benchmark demonstrate that the proposed method delivers more reliable coverage than standard conformal prediction, especially under substantial distribution shifts, while maintaining efficiency. This provides a practical step toward trustworthy uncertainty quantification for LLMs in real-world deployment.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 9 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube