Language Model as Planner and Formalizer under Constraints (2510.05486v1)
Abstract: LLMs have been widely used in planning, either as planners to generate action sequences end-to-end, or as formalizers to represent the planning domain and problem in a formal language that can derive plans deterministically. However, both lines of work rely on standard benchmarks that only include generic and simplistic environmental specifications, leading to potential overestimation of the planning ability of LLMs and safety concerns in downstream tasks. We bridge this gap by augmenting widely used planning benchmarks with manually annotated, fine-grained, and rich natural language constraints spanning four formally defined categories. Over 4 state-of-the-art reasoning LLMs, 3 formal languages, 5 methods, and 4 datasets, we show that the introduction of constraints not only consistently halves performance, but also significantly challenges robustness to problem complexity and lexical shift.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.