Vul-R2: A Reasoning LLM for Automated Vulnerability Repair (2510.05480v1)
Abstract: The exponential increase in software vulnerabilities has created an urgent need for automatic vulnerability repair (AVR) solutions. Recent research has formulated AVR as a sequence generation problem and has leveraged LLMs to address this problem. Typically, these approaches prompt or fine-tune LLMs to generate repairs for vulnerabilities directly. Although these methods show state-of-the-art performance, they face the following challenges: (1) Lack of high-quality, vulnerability-related reasoning data. Current approaches primarily rely on foundation models that mainly encode general programming knowledge. Without vulnerability-related reasoning data, they tend to fail to capture the diverse vulnerability repair patterns. (2) Hard to verify the intermediate vulnerability repair process during LLM training. Existing reinforcement learning methods often leverage intermediate execution feedback from the environment (e.g., sandbox-based execution results) to guide reinforcement learning training. In contrast, the vulnerability repair process generally lacks such intermediate, verifiable feedback, which poses additional challenges for model training.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.