Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On Limits on the Provable Consequences of Quantum Pseudorandomness (2510.05393v1)

Published 6 Oct 2025 in quant-ph and cs.CR

Abstract: There are various notions of quantum pseudorandomness, such as pseudorandom unitaries (PRUs), pseudorandom state generators (PRSGs) and pseudorandom function-like state generators (PRSFGs). Unlike the different notions of classical pseudorandomness, which are known to be existentially equivalent to each other, the relation between quantum pseudorandomness has yet to be fully established. We present some evidence suggesting that some quantum pseudorandomness is unlikely to be constructed from the others, or at least is hard to construct unless some conjectures are false. This indicates that quantum pseudorandomness could behave quite differently from classical pseudorandomness. We study new oracle worlds where one quantum pseudorandomness exists but another pseudorandomness does not under some assumptions or constraints, and provide potential directions to achieve the full black-box separation. More precisely: - We give a unitary oracle relative to which PRFSGs exist but PRUs without using ancilla do not. This can be extended to the general PRUs if we can prove a structural property of the PRU algorithm. - Assuming an isoperimetric inequality-style conjecture, we show a unitary oracle world where log-length output PRFSGs exist but proving the existence of quantum-computable pseudorandom generators (QPRGs) with negligible correctness error is as hard as proving that ${\sf BQP}\neq {\sf QCMA}$. This result suggests that the inverse-polynomial error in the state of the art construction of QPRGs from log-length PRSGs is inherent. - Assuming the same conjecture, we prove that some natural way of constructing super-log-length output PRSGs from log-length output PRFSGs is impossible. This partly complements the known hardness of shrinking the PRSG output lengths. Along the way, we also discuss other potential approaches to extend the PRSG output lengths.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 3 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube