Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Koopman Control Factorization: Data-Driven Convex Controller Design for a Class of Nonlinear Systems (2510.05359v1)

Published 6 Oct 2025 in eess.SY and cs.SY

Abstract: Although Koopman operators provide a global linearization for autonomous dynamical systems, nonautonomous systems are not globally linear in the inputs. State (or output) feedback controller design therefore remains nonconvex in typical formulations, even with approximations via bilinear control-affine terms. We address this gap by introducing the Koopman Control Factorization, a novel parameterization of control-affine dynamical systems combined with a feedback controller defined as a linear combination of nonlinear measurements. With this choice, the Koopman operator of the closed-loop system is a bilinear combination of the coefficients in two matrices: one representing the system, and the other the controller. We propose a set of sufficient conditions such that the factorization holds. Then, we present an algorithm that calculates the feedback matrix via semi-definite programming, producing a Lyapunov-stable closed-loop system with convex optimization. We evaluate the proposed controllers on two canonical examples of control-affine nonlinear systems (inverted pendulums), and show that our factorization and controller successfully stabilize both under properly-chosen basis functions. This manuscript introduces a broadly generalizable control synthesis method for stabilization of nonlinear systems that is quick-to-compute, verifiably stable, data-driven, and does not rely on approximations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.