Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 66 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Tensor-on-tensor Regression Neural Networks for Process Modeling with High-dimensional Data (2510.05329v1)

Published 6 Oct 2025 in cs.LG and stat.ML

Abstract: Modern sensing and metrology systems now stream terabytes of heterogeneous, high-dimensional (HD) data profiles, images, and dense point clouds, whose natural representation is multi-way tensors. Understanding such data requires regression models that preserve tensor geometry, yet remain expressive enough to capture the pronounced nonlinear interactions that dominate many industrial and mechanical processes. Existing tensor-based regressors meet the first requirement but remain essentially linear. Conversely, conventional neural networks offer nonlinearity only after flattening, thereby discarding spatial structure and incurring prohibitive parameter counts. This paper introduces a Tensor-on-Tensor Regression Neural Network (TRNN) that unifies these two paradigms.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 21 likes.