Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

RAG Makes Guardrails Unsafe? Investigating Robustness of Guardrails under RAG-style Contexts (2510.05310v1)

Published 6 Oct 2025 in cs.CL and cs.AI

Abstract: With the increasing adoption of LLMs, ensuring the safety of LLM systems has become a pressing concern. External LLM-based guardrail models have emerged as a popular solution to screen unsafe inputs and outputs, but they are themselves fine-tuned or prompt-engineered LLMs that are vulnerable to data distribution shifts. In this paper, taking Retrieval Augmentation Generation (RAG) as a case study, we investigated how robust LLM-based guardrails are against additional information embedded in the context. Through a systematic evaluation of 3 Llama Guards and 2 GPT-oss models, we confirmed that inserting benign documents into the guardrail context alters the judgments of input and output guardrails in around 11% and 8% of cases, making them unreliable. We separately analyzed the effect of each component in the augmented context: retrieved documents, user query, and LLM-generated response. The two mitigation methods we tested only bring minor improvements. These results expose a context-robustness gap in current guardrails and motivate training and evaluation protocols that are robust to retrieval and query composition.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.