Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Stratum: System-Hardware Co-Design with Tiered Monolithic 3D-Stackable DRAM for Efficient MoE Serving (2510.05245v1)

Published 6 Oct 2025 in cs.AR, cs.ET, and cs.LG

Abstract: As LLMs continue to evolve, Mixture of Experts (MoE) architecture has emerged as a prevailing design for achieving state-of-the-art performance across a wide range of tasks. MoE models use sparse gating to activate only a handful of expert sub-networks per input, achieving billion-parameter capacity with inference costs akin to much smaller models. However, such models often pose challenges for hardware deployment due to the massive data volume introduced by the MoE layers. To address the challenges of serving MoE models, we propose Stratum, a system-hardware co-design approach that combines the novel memory technology Monolithic 3D-Stackable DRAM (Mono3D DRAM), near-memory processing (NMP), and GPU acceleration. The logic and Mono3D DRAM dies are connected through hybrid bonding, whereas the Mono3D DRAM stack and GPU are interconnected via silicon interposer. Mono3D DRAM offers higher internal bandwidth than HBM thanks to the dense vertical interconnect pitch enabled by its monolithic structure, which supports implementations of higher-performance near-memory processing. Furthermore, we tackle the latency differences introduced by aggressive vertical scaling of Mono3D DRAM along the z-dimension by constructing internal memory tiers and assigning data across layers based on access likelihood, guided by topic-based expert usage prediction to boost NMP throughput. The Stratum system achieves up to 8.29x improvement in decoding throughput and 7.66x better energy efficiency across various benchmarks compared to GPU baselines.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube