FlashResearch: Real-time Agent Orchestration for Efficient Deep Research (2510.05145v1)
Abstract: Deep research agents, which synthesize information across diverse sources, are significantly constrained by their sequential reasoning processes. This architectural bottleneck results in high latency, poor runtime adaptability, and inefficient resource allocation, making them impractical for interactive applications. To overcome this, we introduce FlashResearch, a novel framework for efficient deep research that transforms sequential processing into parallel, runtime orchestration by dynamically decomposing complex queries into tree-structured sub-tasks. Our core contributions are threefold: (1) an adaptive planner that dynamically allocates computational resources by determining research breadth and depth based on query complexity; (2) a real-time orchestration layer that monitors research progress and prunes redundant paths to reallocate resources and optimize efficiency; and (3) a multi-dimensional parallelization framework that enables concurrency across both research breadth and depth. Experiments show that FlashResearch consistently improves final report quality within fixed time budgets, and can deliver up to a 5x speedup while maintaining comparable quality.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.