Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Improving Metacognition and Uncertainty Communication in Language Models (2510.05126v1)

Published 30 Sep 2025 in cs.CL and cs.AI

Abstract: LLMs are increasingly used in decision-making contexts, but when they present answers without signaling low confidence, users may unknowingly act on erroneous outputs. While prior work shows that LLMs maintain internal uncertainty signals, their explicit verbalized confidence is typically miscalibrated and poorly discriminates between correct and incorrect answers. Across two types of LLMs, we investigate whether supervised finetuning can improve models' ability to communicate uncertainty and whether such improvements generalize across tasks and domains. We finetune the LLMs on datasets spanning general knowledge, mathematics, and open-ended trivia, and evaluate two metacognitive tasks: (1) single-question confidence estimation, where the model assigns a numeric certainty to its answer, and (2) pairwise confidence comparison, where the model selects which of two answers it is more likely to have correct. We assess generalization to unseen domains, including medical and legal reasoning. Results show that finetuning improves calibration (alignment between stated confidence and accuracy) and discrimination (higher confidence for correct vs. incorrect responses) within and across domains, while leaving accuracy unchanged. However, improvements are task-specific: training on single-question calibration does not transfer to pairwise comparison, and vice versa. In contrast, multitask finetuning on both forms of metacognition yields broader gains, producing lower calibration error and stronger discrimination in out-of-domain evaluations. These results show that while uncertainty communication in LLMs is trainable and generalizable, different metacognitive skills do not naturally reinforce one another and must be developed together through multitask training.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: