Papers
Topics
Authors
Recent
2000 character limit reached

Look-ahead Reasoning with a Learned Model in Imperfect Information Games (2510.05048v1)

Published 6 Oct 2025 in cs.AI and cs.GT

Abstract: Test-time reasoning significantly enhances pre-trained AI agents' performance. However, it requires an explicit environment model, often unavailable or overly complex in real-world scenarios. While MuZero enables effective model learning for search in perfect information games, extending this paradigm to imperfect information games presents substantial challenges due to more nuanced look-ahead reasoning techniques and large number of states relevant for individual decisions. This paper introduces an algorithm LAMIR that learns an abstracted model of an imperfect information game directly from the agent-environment interaction. During test time, this trained model is used to perform look-ahead reasoning. The learned abstraction limits the size of each subgame to a manageable size, making theoretically principled look-ahead reasoning tractable even in games where previous methods could not scale. We empirically demonstrate that with sufficient capacity, LAMIR learns the exact underlying game structure, and with limited capacity, it still learns a valuable abstraction, which improves game playing performance of the pre-trained agents even in large games.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: