Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On Cryptography and Distribution Verification, with Applications to Quantum Advantage (2510.05028v1)

Published 6 Oct 2025 in quant-ph, cs.CC, and cs.CR

Abstract: One of the most fundamental problems in the field of hypothesis testing is the identity testing problem: whether samples from some unknown distribution $\mathcal{G}$ are actually from some explicit distribution $\mathcal{D}$. It is known that when the distribution $\mathcal{D}$ has support $[N]$, the optimal sample complexity for the identity testing problem is roughly $O(\sqrt{N})$. However, many distributions of interest, including those which can be sampled efficiently, have exponential support size, and therefore the optimal identity tester also requires exponential samples. In this paper, we bypass this lower bound by considering restricted settings. The above $O(\sqrt{N})$ sample complexity identity tester is constructed so that it is not fooled by any (even inefficiently-sampled) distributions. However, in most applications, the distributions under consideration are efficiently sampleable, and therefore it is enough to consider only identity testers that are not fooled by efficiently-sampled distributions. In that case, we can focus on efficient verification with efficient identity testers. We investigate relations between efficient verifications of classical/quantum distributions and classical/quantum cryptography, and show the following results: (i) Every quantumly samplable distribution is verifiable with a $\mathbf{P{PP}}$ algorithm. (ii) If one-way functions exist, then no sufficiently random classically samplable distribution is efficiently verifiable. (iii) If one-way functions do not exist, then every classically samplable distribution is efficiently verifiable. (iv) If QEFID pairs exist, then there exists a quantumly samplable distribution which is not efficiently verifiable. (v) If one-way puzzles do not exist, then it is possible to verify sampling-based quantum advantage with a efficient quantum computer.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.