Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 83 tok/s
Gemini 2.5 Flash 150 tok/s Pro
Gemini 2.5 Pro 48 tok/s Pro
Kimi K2 190 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Resource-Efficient Fine-Tuning of LLaMA-3.2-3B for Medical Chain-of-Thought Reasoning (2510.05003v1)

Published 6 Oct 2025 in cs.CL and cs.AI

Abstract: LLMs such as GPT-4 and LLaMA have demonstrated remarkable reasoning abilities but require significant computational resources for fine-tuning. This paper presents a resource-efficient fine-tuning approach for LLaMA-3.2-3B to enhance medical chain-of-thought reasoning while operating under constrained GPU and memory settings. Using parameter-efficient tuning techniques such as LoRA and QLoRA, we adapt the base model on publicly available medical reasoning datasets. The model achieves improved reasoning coherence and factual accuracy while reducing memory usage by up to 60% compared to standard full fine-tuning. Experimental evaluation demonstrates that lightweight adaptations can retain strong reasoning capability in medical question-answering tasks. This work highlights practical strategies for deploying LLMs in low-resource research environments and provides insights into balancing efficiency and domain specialization for medical AI systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 5 likes.

Upgrade to Pro to view all of the tweets about this paper: