Papers
Topics
Authors
Recent
2000 character limit reached

Flow-Matching Based Refiner for Molecular Conformer Generation (2510.04878v1)

Published 6 Oct 2025 in cs.LG and q-bio.QM

Abstract: Low-energy molecular conformers generation (MCG) is a foundational yet challenging problem in drug discovery. Denoising-based methods include diffusion and flow-matching methods that learn mappings from a simple base distribution to the molecular conformer distribution. However, these approaches often suffer from error accumulation during sampling, especially in the low SNR steps, which are hard to train. To address these challenges, we propose a flow-matching refiner for the MCG task. The proposed method initializes sampling from mixed-quality outputs produced by upstream denoising models and reschedules the noise scale to bypass the low-SNR phase, thereby improving sample quality. On the GEOM-QM9 and GEOM-Drugs benchmark datasets, the generator-refiner pipeline improves quality with fewer total denoising steps while preserving diversity.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.