Papers
Topics
Authors
Recent
2000 character limit reached

DiT-VTON: Diffusion Transformer Framework for Unified Multi-Category Virtual Try-On and Virtual Try-All with Integrated Image Editing (2510.04797v1)

Published 3 Oct 2025 in cs.CV and cs.AI

Abstract: The rapid growth of e-commerce has intensified the demand for Virtual Try-On (VTO) technologies, enabling customers to realistically visualize products overlaid on their own images. Despite recent advances, existing VTO models face challenges with fine-grained detail preservation, robustness to real-world imagery, efficient sampling, image editing capabilities, and generalization across diverse product categories. In this paper, we present DiT-VTON, a novel VTO framework that leverages a Diffusion Transformer (DiT), renowned for its performance on text-conditioned image generation, adapted here for the image-conditioned VTO task. We systematically explore multiple DiT configurations, including in-context token concatenation, channel concatenation, and ControlNet integration, to determine the best setup for VTO image conditioning. To enhance robustness, we train the model on an expanded dataset encompassing varied backgrounds, unstructured references, and non-garment categories, demonstrating the benefits of data scaling for VTO adaptability. DiT-VTON also redefines the VTO task beyond garment try-on, offering a versatile Virtual Try-All (VTA) solution capable of handling a wide range of product categories and supporting advanced image editing functionalities such as pose preservation, localized editing, texture transfer, and object-level customization. Experimental results show that our model surpasses state-of-the-art methods on VITON-HD, achieving superior detail preservation and robustness without reliance on additional condition encoders. It also outperforms models with VTA and image editing capabilities on a diverse dataset spanning thousands of product categories.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.