Papers
Topics
Authors
Recent
2000 character limit reached

ModernBERT + ColBERT: Enhancing biomedical RAG through an advanced re-ranking retriever (2510.04757v1)

Published 6 Oct 2025 in cs.CL and q-bio.QM

Abstract: Retrieval-Augmented Generation (RAG) is a powerful technique for enriching LLMs with external knowledge, allowing for factually grounded responses, a critical requirement in high-stakes domains such as healthcare. However, the efficacy of RAG systems is fundamentally restricted by the performance of their retrieval module, since irrelevant or semantically misaligned documents directly compromise the accuracy of the final generated response. General-purpose dense retrievers can struggle with the nuanced language of specialised domains, while the high accuracy of in-domain models is often achieved at prohibitive computational costs. In this work, we aim to address this trade-off by developing and evaluating a two-stage retrieval architecture that combines a lightweight ModernBERT bidirectional encoder for efficient initial candidate retrieval with a ColBERTv2 late-interaction model for fine-grained re-ranking. We conduct comprehensive evaluations of our retriever module performance and RAG system performance in the biomedical context, fine-tuning the IR module using 10k question-passage pairs from PubMedQA. Our analysis of the retriever module confirmed the positive impact of the ColBERT re-ranker, which improved Recall@3 by up to 4.2 percentage points compared to its retrieve-only counterpart. When integrated into the biomedical RAG, our IR module leads to a state-of-the-art average accuracy of 0.4448 on the five tasks of the MIRAGE question-answering benchmark, outperforming strong baselines such as MedCPT (0.4436). Our ablation studies reveal that this performance is critically dependent on a joint fine-tuning process that aligns the retriever and re-ranker; otherwise, the re-ranker might degrade the performance.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.