Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Quantum Subgradient Estimation for Conditional Value-at-Risk Optimization (2510.04736v1)

Published 6 Oct 2025 in quant-ph and cs.CC

Abstract: Conditional Value-at-Risk (CVaR) is a leading tail-risk measure in finance, central to both regulatory and portfolio optimization frameworks. Classical estimation of CVaR and its gradients relies on Monte Carlo simulation, incurring $O(1/\epsilon2)$ sample complexity to achieve $\epsilon$-accuracy. In this work, we design and analyze a quantum subgradient oracle for CVaR minimization based on amplitude estimation. Via a tripartite proposition, we show that CVaR subgradients can be estimated with $O(1/\epsilon)$ quantum queries, even when the Value-at-Risk (VaR) threshold itself must be estimated. We further quantify the propagation of estimation error from the VaR stage to CVaR gradients and derive convergence rates of stochastic projected subgradient descent using this oracle. Our analysis establishes a near-quadratic improvement in query complexity over classical Monte Carlo. Numerical experiments with simulated quantum circuits confirm the theoretical rates and illustrate robustness to threshold estimation noise. This constitutes the first rigorous complexity analysis of quantum subgradient methods for tail-risk minimization.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.