Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Benchmark on Monocular Metric Depth Estimation in Wildlife Setting (2510.04723v1)

Published 6 Oct 2025 in cs.CV

Abstract: Camera traps are widely used for wildlife monitoring, but extracting accurate distance measurements from monocular images remains challenging due to the lack of depth information. While monocular depth estimation (MDE) methods have advanced significantly, their performance in natural wildlife environments has not been systematically evaluated. This work introduces the first benchmark for monocular metric depth estimation in wildlife monitoring conditions. We evaluate four state-of-the-art MDE methods (Depth Anything V2, ML Depth Pro, ZoeDepth, and Metric3D) alongside a geometric baseline on 93 camera trap images with ground truth distances obtained using calibrated ChARUCO patterns. Our results demonstrate that Depth Anything V2 achieves the best overall performance with a mean absolute error of 0.454m and correlation of 0.962, while methods like ZoeDepth show significant degradation in outdoor natural environments (MAE: 3.087m). We find that median-based depth extraction consistently outperforms mean-based approaches across all deep learning methods. Additionally, we analyze computational efficiency, with ZoeDepth being fastest (0.17s per image) but least accurate, while Depth Anything V2 provides an optimal balance of accuracy and speed (0.22s per image). This benchmark establishes performance baselines for wildlife applications and provides practical guidance for implementing depth estimation in conservation monitoring systems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.