Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Tail-Safe Hedging: Explainable Risk-Sensitive Reinforcement Learning with a White-Box CBF--QP Safety Layer in Arbitrage-Free Markets (2510.04555v1)

Published 6 Oct 2025 in cs.LG and q-fin.TR

Abstract: We introduce Tail-Safe, a deployability-oriented framework for derivatives hedging that unifies distributional, risk-sensitive reinforcement learning with a white-box control-barrier-function (CBF) quadratic-program (QP) safety layer tailored to financial constraints. The learning component combines an IQN-based distributional critic with a CVaR objective (IQN--CVaR--PPO) and a Tail-Coverage Controller that regulates quantile sampling through temperature tilting and tail boosting to stabilize small-$\alpha$ estimation. The safety component enforces discrete-time CBF inequalities together with domain-specific constraints -- ellipsoidal no-trade bands, box and rate limits, and a sign-consistency gate -- solved as a convex QP whose telemetry (active sets, tightness, rate utilization, gate scores, slack, and solver status) forms an auditable trail for governance. We provide guarantees of robust forward invariance of the safe set under bounded model mismatch, a minimal-deviation projection interpretation of the QP, a KL-to-DRO upper bound linking per-state KL regularization to worst-case CVaR, concentration and sample-complexity results for the temperature-tilted CVaR estimator, and a CVaR trust-region improvement inequality under KL limits, together with feasibility persistence under expiry-aware tightening. Empirically, in arbitrage-free, microstructure-aware synthetic markets (SSVI $\to$ Dupire $\to$ VIX with ABIDES/MockLOB execution), Tail-Safe improves left-tail risk without degrading central performance and yields zero hard-constraint violations whenever the QP is feasible with zero slack. Telemetry is mapped to governance dashboards and incident workflows to support explainability and auditability. Limitations include reliance on synthetic data and simplified execution to isolate methodological contributions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: