Modular and Adaptive Conformal Prediction for Sequential Models via Residual Decomposition (2510.04406v1)
Abstract: Conformal prediction offers finite-sample coverage guarantees under minimal assumptions. However, existing methods treat the entire modeling process as a black box, overlooking opportunities to exploit modular structure. We introduce a conformal prediction framework for two-stage sequential models, where an upstream predictor generates intermediate representations for a downstream model. By decomposing the overall prediction residual into stage-specific components, our method enables practitioners to attribute uncertainty to specific pipeline stages. We develop a risk-controlled parameter selection procedure using family-wise error rate (FWER) control to calibrate stage-wise scaling parameters, and propose an adaptive extension for non-stationary settings that preserves long-run coverage guarantees. Experiments on synthetic distribution shifts, as well as real-world supply chain and stock market data, demonstrate that our approach maintains coverage under conditions that degrade standard conformal methods, while providing interpretable stage-wise uncertainty attribution. This framework offers diagnostic advantages and robust coverage that standard conformal methods lack.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.