Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Adaptive Weighted Loss for Sequential Recommendations on Sparse Domains (2510.04375v1)

Published 5 Oct 2025 in cs.LG and cs.AI

Abstract: The effectiveness of single-model sequential recommendation architectures, while scalable, is often limited when catering to "power users" in sparse or niche domains. Our previous research, PinnerFormerLite, addressed this by using a fixed weighted loss to prioritize specific domains. However, this approach can be sub-optimal, as a single, uniform weight may not be sufficient for domains with very few interactions, where the training signal is easily diluted by the vast, generic dataset. This paper proposes a novel, data-driven approach: a Dynamic Weighted Loss function with comprehensive theoretical foundations and extensive empirical validation. We introduce an adaptive algorithm that adjusts the loss weight for each domain based on its sparsity in the training data, assigning a higher weight to sparser domains and a lower weight to denser ones. This ensures that even rare user interests contribute a meaningful gradient signal, preventing them from being overshadowed. We provide rigorous theoretical analysis including convergence proofs, complexity analysis, and bounds analysis to establish the stability and efficiency of our approach. Our comprehensive empirical validation across four diverse datasets (MovieLens, Amazon Electronics, Yelp Business, LastFM Music) with state-of-the-art baselines (SIGMA, CALRec, SparseEnNet) demonstrates that this dynamic weighting system significantly outperforms all comparison methods, particularly for sparse domains, achieving substantial lifts in key metrics like Recall at 10 and NDCG at 10 while maintaining performance on denser domains and introducing minimal computational overhead.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.