Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Quantifying Ambiguity in Categorical Annotations: A Measure and Statistical Inference Framework (2510.04366v1)

Published 5 Oct 2025 in cs.LG

Abstract: Human-generated categorical annotations frequently produce empirical response distributions (soft labels) that reflect ambiguity rather than simple annotator error. We introduce an ambiguity measure that maps a discrete response distribution to a scalar in the unit interval, designed to quantify aleatoric uncertainty in categorical tasks. The measure bears a close relationship to quadratic entropy (Gini-style impurity) but departs from those indices by treating an explicit "can't solve" category asymmetrically, thereby separating uncertainty arising from class-level indistinguishability from uncertainty due to explicit unresolvability. We analyze the measure's formal properties and contrast its behavior with a representative ambiguity measure from the literature. Moving beyond description, we develop statistical tools for inference: we propose frequentist point estimators for population ambiguity and derive the Bayesian posterior over ambiguity induced by Dirichlet priors on the underlying probability vector, providing a principled account of epistemic uncertainty. Numerical examples illustrate estimation, calibration, and practical use for dataset-quality assessment and downstream machine-learning workflows.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.