Papers
Topics
Authors
Recent
2000 character limit reached

Equipping Retrieval-Augmented Large Language Models with Document Structure Awareness (2510.04293v1)

Published 5 Oct 2025 in cs.CL

Abstract: While LLMs demonstrate impressive capabilities, their reliance on parametric knowledge often leads to factual inaccuracies. Retrieval-Augmented Generation (RAG) mitigates this by leveraging external documents, yet existing approaches treat retrieved passages as isolated chunks, ignoring valuable structure that is crucial for document organization. Motivated by this gap, we propose Retrieve-DocumentRoute-Read (RDR2), a novel framework that explicitly incorporates structural information throughout the RAG process. RDR2 employs an LLM-based router to dynamically navigate document structure trees, jointly evaluating content relevance and hierarchical relationships to assemble optimal evidence. Our key innovation lies in formulating document routing as a trainable task, with automatic action curation and structure-aware passage selection inspired by human reading strategies. Through comprehensive evaluation on five challenging datasets, RDR2 achieves state-of-the-art performance, demonstrating that explicit structural awareness significantly enhances RAG systems' ability to acquire and utilize knowledge, particularly in complex scenarios requiring multi-document synthesis.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.