Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Concept-Based Masking: A Patch-Agnostic Defense Against Adversarial Patch Attacks (2510.04245v1)

Published 5 Oct 2025 in cs.CV and cs.AI

Abstract: Adversarial patch attacks pose a practical threat to deep learning models by forcing targeted misclassifications through localized perturbations, often realized in the physical world. Existing defenses typically assume prior knowledge of patch size or location, limiting their applicability. In this work, we propose a patch-agnostic defense that leverages concept-based explanations to identify and suppress the most influential concept activation vectors, thereby neutralizing patch effects without explicit detection. Evaluated on Imagenette with a ResNet-50, our method achieves higher robust and clean accuracy than the state-of-the-art PatchCleanser, while maintaining strong performance across varying patch sizes and locations. Our results highlight the promise of combining interpretability with robustness and suggest concept-driven defenses as a scalable strategy for securing machine learning models against adversarial patch attacks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.