MASC: Boosting Autoregressive Image Generation with a Manifold-Aligned Semantic Clustering (2510.04220v1)
Abstract: Autoregressive (AR) models have shown great promise in image generation, yet they face a fundamental inefficiency stemming from their core component: a vast, unstructured vocabulary of visual tokens. This conventional approach treats tokens as a flat vocabulary, disregarding the intrinsic structure of the token embedding space where proximity often correlates with semantic similarity. This oversight results in a highly complex prediction task, which hinders training efficiency and limits final generation quality. To resolve this, we propose Manifold-Aligned Semantic Clustering (MASC), a principled framework that constructs a hierarchical semantic tree directly from the codebook's intrinsic structure. MASC employs a novel geometry-aware distance metric and a density-driven agglomerative construction to model the underlying manifold of the token embeddings. By transforming the flat, high-dimensional prediction task into a structured, hierarchical one, MASC introduces a beneficial inductive bias that significantly simplifies the learning problem for the AR model. MASC is designed as a plug-and-play module, and our extensive experiments validate its effectiveness: it accelerates training by up to 57% and significantly improves generation quality, reducing the FID of LlamaGen-XL from 2.87 to 2.58. MASC elevates existing AR frameworks to be highly competitive with state-of-the-art methods, establishing that structuring the prediction space is as crucial as architectural innovation for scalable generative modeling.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.